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Abstract
We use the coordinate Bethe ansatz approach to derive the nested Bethe
equations corresponding to the recently found S-matrix for strings in AdS5×S5,
compatible with centrally extended su(2|2) symmetry.

PACS numbers: 11.25.Tq, 02.30.Ik

1. Introduction

Recently, there has been a lot of progress in understanding the AdS/CFT correspondence.
One of the most important developments was the discovery of integrable structures on both
sides of the correspondence [1, 2]. Integrability provides new insights in how to calculate
spectra and how to study the correlation between the AdS5 × S5 string sigma model and its
dual gauge theory. An important tool used to solve quantum integrable systems is a technique
called the Bethe ansatz. The Bethe ansatz has been applied to a variety of different problems
and there are two main variations known; the algebraic Bethe ansatz [3] and the coordinate
Bethe ansatz [4].

On the gauge theory side of the AdS/CFT correspondence, integrable structures emerged
via spin chains [2]; it was observed that conformal operators of N = 4 SYM correspond
to eigenstates of an integrable spin chain at the planar one-loop level. Furthermore, the
scaling weights of the conformal operators coincide with energy eigenvalues of the spin chain
Hamiltonian. There is much evidence that integrability on the gauge theory side actually
extends to all loop order and the corresponding Bethe equations have been proposed for
certain asymptotic limits [5–7].

On the string theory side, integrability was exhibited for classical strings on AdS5 × S5

[1]. One important open question is whether integrability is inherited by the quantum string.
Assuming that this is the case for the full quantum theory, a Bethe ansatz for the gauge-fixed
string sigma model was proposed [8]. The construction of [8] is based on the knowledge of
the finite-gap solutions of the classical string sigma-model [9]. The characteristic feature of
the quantum Bethe ansatz in comparison to the gauge theory Bethe ansatz is the appearance
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of an additional scattering (dressing) phase constructed as a two-form on the vector space of
local conserved charges. This dressing phase is universal and underlies the Bethe equations
of the full-fledged sigma model [7]. However, in contradistinction to the gauge theory side,
integrability at higher orders of string perturbation theory remains conjectural. For recent
advances in this direction based on the direct world-sheet approach see [10–12].

The S-matrix describing the scattering of world-sheet excitations, respectively excitations
of a certain spin chain, proved to be crucial in determining the relevant spectrum in the large
volume (charge) limit [7–13]. This S-matrix turns out to be severely restricted if one imposes
compatibility with the global symmetries of the model. It was first shown for the N = 4
gauge theory that the relevant (super)algebra was centrally extended psu(2|2)⊕psu(2|2) [13].
The same algebra also emerges for superstrings on AdS5 × S5 as a symmetry algebra for
the light-cone gauge-fixed Hamiltonian [14]. It appears that both the two-particle S-matrix
for superstrings on AdS5 × S5 in the decompactifying limit and the S-matrix for the su(2|2)

dynamic spin chain [13] can be uniquely determined up to an overall phase factor by requiring
invariance under this global symmetry algebra.

By imposing the requirement of crossing symmetry, which is a common property of
relativistic field theories, one derives constraints on the dressing phase [15]. Based on earlier
work [16–18], an explicit all-order perturbative expression of the dressing phase has been
proposed for strings [19]. It agrees with the known string theory data and respects crossing-
symmetry. The phase factor has also been proposed for the weakly-coupled N = 4 gauge
theory and further evidence was found that it is indeed related to the dressing factor from
string theory by analytic continuation [20–22].

The two-particle S-matrix for superstrings on AdS5 × S5 was recently determined using
the symmetry invariance in [23]. This two-body S-matrix obeys the standard properties:

Yang–Baxter Equation S23S13S12 = S12S13S23

Unitarity Condition S12(p1, p2)S21(p2, p1) = I

Hermitian Analyticity S21(p2, p1)
† = S12(p1, p2)

Crossing Symmetry C−1
1 S

t1
12(p1, p2)C1S12(−p1, p2) = I,

where C is the charge conjugation matrix.
In general one encounters states with more than two excitations and hence one would also

need a multi-particle S-matrix. However, the two-particle S-matrix contains all the relevant
information if one assumes integrability. Scattering in integrable models preserves the number
of particles and the set of their on-shell momenta [24]. In other words, there is no particle
production and in the scattering process the particle momenta are merely exchanged. But, more
importantly, these models admit factorization of the S-matrix, i.e. any multi-particle S-matrix,
describing some scattering process, factorizes in a product of two-particle S-matrices. Note,
nonetheless, that the string S-matrix we are considering, does not depend on the difference of
rapidities, as is normally the case in relativistic two-dimensional integrable models possessing
Lorentz symmetry. The factorized scattering is an extremely useful property, since it allows
one to obtain the spectrum of a model from the two-particle S-matrix only.

Let us now explain how to derive the energy spectrum from the two particle S-matrix in
the string theoretic picture and how the Bethe equations come into play. Consider creation
operators A

†
M and annihilation operators AM . The algebra these operators satisfy is the

so-called Faddeev–Zamolodchikov (ZF) algebra [24, 25]:

A1A2 = S12A2A1, A
†
1A

†
2 = A

†
2A

†
1S12, A1A

†
2 = A

†
2S12A1 + δ12, (1)
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where S12 is the two-particle S-matrix and δ12 is the delta function depending on the difference
of the momenta of the scattering particles. One can recognize that the standard properties of
the two-particle S-matrix described above follow by requiring consistency of the ZF algebra
relations. Asymptotic states are then constructed by acting with creation operators on the
vacuum |0〉. A generic state, consisting of excitations with momentum pi , will be of the
form

A
†
M1

(p1) . . . A
†
MN

(pN)|0〉. (2)

The Hamiltonian is given by one of the central charges of the symmetry algebra and hence,
the dispersion relation is known [6]. From this, one can find the energy of such a state [6]:

E =
N∑

i=1

√
1 + 16g2 sin2

(
1

2
pi

)
. (3)

This holds for any values of the momenta pi . However, since we are dealing with closed
strings, we have to impose periodicity on the wavefunction of world-sheet excitations. This
requirement puts a restriction on the momenta in the form of a set of equations, usually
referred to as (nested) Bethe equations. For the model in question this has been done recently
by applying the algebraic Bethe ansatz approach [26].

In this paper, we will rederive the nested Bethe equations by using the coordinate Bethe
ansatz in a way similar to [13]. First, we discuss the string S-matrix, present the equations
obtained in [26] and briefly comment on how they were derived. Then we explain how the
nested Bethe ansatz works, followed by a more detailed discussion on the involved calculations.
We will also point out where the calculations differ from [13]. These results will be used to
obtain the Bethe equations, which coincide with those found in [26]1. We will also compare
the obtained equations to those proposed in [7]. Finally, as a byproduct of our procedure we
also obtain the explicit form of the Bethe wavefunction.

2. The S-matrix and algebraic Bethe ansatz

By demanding compatibility of the S-matrix describing world-sheet scattering, with centrally
extended su(2|2) symmetry, one can determine the S-matrix for strings on AdS5 × S5 up to a
phase factor [23]. We will consider this S-matrix:

ŜI
12 = S

string
12 (p1, p2). (4)

It acts according to the ZF algebra

ŜI
12 · A

†
M1

(p1)A
†
M2

(p2) = S
N1N2
M1M2

A
†
N2

(p2)A
†
N1

(p1), (5)

where the sum convention is used. Let us write the components of the S-matrix in the following
way:

SI
12

∣∣A†
a(p1)A

†
b(p2)

〉 = A
∣∣A†

{a(p2)A
†
b}(p1)

〉
+ B

∣∣A†
[a(p2)A

†
b](p1)

〉
+ 1

2Cεabε
αβ

∣∣A†
α(p2)A

†
β(p1)

〉
SI

12

∣∣A†
α(p1)A

†
β(p2)

〉 = D
∣∣A†

{α(p2)A
†
β}(p1)

〉
+ E

∣∣A†
[α(p2)A

†
β](p1)

〉
+ 1

2Fεαβεab
∣∣A†

a(p2)A
†
b(p1)

〉
SI

12

∣∣A†
a(p1)A

†
β(p2)

〉 = G
∣∣A†

β(p2)A
†
a(p1)

〉
+ H

∣∣A†
a(p2)A

†
β(p1)

〉
SI

12

∣∣A†
α(p1)A

†
b(p2)

〉 = K
∣∣A†

α(p2)A
†
b(p1)

〉
+ L

∣∣A†
b(p2)A

†
α(p1)

〉
. (6)

We will use the convention that the index M = 1, 2, 3, 4 runs through both bosonic and
fermionic indices. The bosonic indices will be labelled a, b = 1, 2 and the fermionic indices

1 There is a subtle sign issue which is discussed in the following section.
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will be labelled α, β = 3, 4. The coefficients describing this scattering are easily seen from
(5) to be

A = a1(p1, p2) F = 2a7(p1, p2)

B = −(a1 + 2a2)(p1, p2) G = a5(p1, p2)

C = 2a8(p1, p2) H = a10(p1, p2)

D = a3(p1, p2) K = a9(p1, p2)

E = −(a3 + 2a4)(p1, p2) L = a6(p1, p2)

The explicit form of the factors ai is derived in [23] and is for convenience stated it in the
appendix.

It is instructive to compare this S-matrix to that used in [13]. The S-matrix derived in
[23], also describes the spin chain S-matrix, by making a particular choice for the coefficients
ai , which is given in the appendix. The relation of this spin chain S-matrix, with the S-matrix
derived by Beisert, SB , in [13], is given by complex conjugation

SB(p1, p2) = S
chain

(p1, p2), (7)

where Schain is the aforementioned chain version of the S-matrix and we have chosen x± = x∓.
This relation is more convenient in our case than the one given in [23]:

SB(p1, p2) = PPSchain(p2, p1)P, (8)

where P and P are permutation and graded permutation respectively. In the latter case, the
identification of the coefficients with A,B etc. is a little less straightforward.

By imposing periodicity on the discussed system, one derives restrictions on the momenta
pi . The algebraic version of the nested Bethe ansatz was recently applied [26] to derive
the equations describing this. This is done by transforming the string S-matrix to Shastry’s
graded R-matrix, which makes that one can apply results earlier derived for the Hubbard model
[27, 28]. From this, the Bethe equations for the string excitations are obtained and are given
by

eipk(−L+N− m
(1)
1
2 − m

(2)
1
2 ) = eiP

N∏
i=1,i �=k

S0(pk, pi)

[
x−

i − x+
k

x+
i − x−

k

]2 2∏
α=1

m
(α)
1∏

j=1

[
y

(α)
j − x−

k

y
(α)
j − x+

k

]

ei P
2

N∏
i=1

[
y

(α)
j − x−

i

y
(α)
j − x+

i

]
=

m
(α)
2∏

l=1

[
v

(α)
j − w

(α)
l + i

2g

v
(α)
j − w

(α)
l − i

2g

]
m

(α)
1∏

j=1

[
w

(α)
l − v

(α)
j + i

2g

w
(α)
l − v

(α)
j − i

2g

]
=

m
(α)
2∏

k=1,k �=l

[
w

(α)
l − w

(α)
k + i

g

w
(α)
l − w

(α)
k − i

g

]
,

(9)

where y and w are auxiliary parameters and y and v are related via

v = y +
1

y
. (10)

As one would expect, these equations are very similar to those describing the su(2|2) dynamic
spin chain [13], however, when comparing to [7], we see that there is a slight mismatch
L ↔ −L, which is probably due the ambiguity in the Bethe ansatz as noted at the end of
section 3 from [26]. In [13], the coordinate Bethe ansatz is used to derive the Bethe equations.
In the following sections we will make the comparison explicit, i.e. we will rederive these
equations by using the coordinate Bethe ansatz. However, we will set up our ansatz in such a
way that the sign in front of L will coincide with that in [7].
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Let us conclude this section by briefly discussing the difference between the algebraic and
the coordinate Bethe ansatz approaches. In the algebraic case, one considers the monodromy
matrix of the system. The starting point is to choose a particular state which is annihilated by
the lower triangular part of the monodromy matrix. Then, from the upper triangular part, one
can find creation operators. These operators are used to construct eigenstates of the trace of
the monodromy (transfer matrix). From this construction one obtains the Bethe equations.

In the coordinate Bethe ansatz, one makes an ansatz for the wavefunction directly from
the creation operators of the ZF algebra acting on a vacuum. Then one imposes periodicity on
this wave function, which leads to the Bethe equations.

3. Procedure

In this section we will briefly discuss how the method of the coordinate Bethe ansatz will be
applied here. Most of the calculational details will be treated in the following sections. The
nested Bethe ansatz was first introduced in a seminal paper written by Yang [4]. We will
mostly follow [7, 13].

The problem one wishes to solve is how to impose the periodicity condition on the
wavefunction of the world-sheet excitations. This is needed since we are dealing with (non-
interacting) closed strings of length described by a parameter L. Thus, the wavefunctions
corresponding to world-sheet excitations should be L-periodic. The equations that capture this
are called the Bethe equations.

Let us introduce some notation. The different asymptotic string states are built out of the
ZF oscillators A

†
i (pk) acting on a vacuum |0〉. Let us now consider the coordinate space with

coordinates σ and suppose we create a state by using K I creation operators.
Consider the case σ1 � · · · � σK I . In this case, the excitations are far apart,

which means that we neglect the interaction between them. Consider a creation operator
A

†
M(σ), which creates a particle with the index M at position σ . By definition, the state∣∣A†
M1

(p1) . . . A
†
M

KI
(pK I)

〉
:= A

†
M1

(p1) . . . A
†
M

KI
(pK I)|0〉 describes K I particles such that the

particle with momentum pi is to the left of the particle with momentum pi+1. In other words,
we have the identification∣∣A†

M1
(p1) · · · A†

MKI
(σK I)

〉 =
∫

σ1�···�σKI

dσ1 . . . dσK I e−i
∑KI

j=1 pj σj A
†
M1

(σ1) . . . A
†
MKI

(σK I)|0〉.

(11)

The ansatz for the wavefunction in this sector is

�(p1, . . . , pK I) = χM1...MKI (p1, . . . , pK I)
∣∣A†

M1
(p1) . . . A

†
M

KI
(σK I)

〉
, (12)

where the indices are summed over. More generally, if Q is a permutation of the numbers
(1, . . . , K I), then in the sector where σQ1 � · · · � σQKI , we make a similar ansatz:

�Q(q1, . . . , qK I) = χQ;N1...NKI (q1, . . . , qK I)A
†
N1

(q1) . . . A
†
NKI

(qK I)|0〉. (13)

Note that we can also just see this as a wavefunction in the sector σ1 � · · · � σK I with
permuted momenta, by just a simple relabelling of the integration variables in (11). The
region where there is interaction between the excitations links the different sectors and the
relation between them is, by definition, given by the S-matrix. Thus, if we for example
consider Q = (12), then we obtain the following relation:

χ12;N1N2...(p2, p1, . . . , pK I) = S
N2N1
M1M2

χM1M2...(p1, p2, . . . , pK I). (14)
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More specifically, by the above relation, we can extend the asymptotic state in the region
σ1 � · · · � σK I to the entire string in a unique way. The complete wavefunction for this
asymptotic state will be given by

χM1...MKI (p1, . . . , pK I)
∑

P∈SKI

ŜP

∣∣A†
M1

(p1) . . . A
†
MI

(pK I)
〉I

+ non-asymp, (15)

where the sum runs over all permutations of {1, . . . , K I}. The periodicity condition is
implemented by demanding that the wavefunction is invariant under

(σ1, . . . , σK I) → (σK I + L, σ1, σ2, . . . , σK I−1)

→ (σK I−k + L, . . . , σK I + L, σ1, σ2, . . . , σK I−k−1) (16)

for all k ∈ {1, . . . , K I}. When we make ansatz (13), the periodicity condition (16), for any k,
is given by

e−ipkLŜI
(k,−1) . . . ŜI

(k,K1)Ŝ
I
(k,K1) . . . ŜI

(k,k+1)�(p) = �(p), (17)

or written out explicitly

e−ipKLS
µ1λ1
M1M2

(pk, pk−1)S
µ2λ2
µ1M3

(pk, pk−2) . . . S
λKI λKI−1
µKI MKI

(pk, pk+1)χM1...MKI = χλ
K1 λ1...λKI−1

. (18)

The term S(pk, pk) is of course absent in the above product.
We are now left with solving this equation for the coefficients χ . This can be solved by

making use of auxiliary systems that allow for additional Bethe ansätze. This is the nesting.
Equation (18) can be seen as a matrix equation:

T
λ1...λKI

k,M1...MKI
χM1...MKI = χλK1 λ1...λKI−1

, (19)

The nesting procedure means that we will find the eigenvectors of the matrix operator T in
steps. Finally, note that we have K I of these equations, but from the Yang–Baxter equation
it is easily verified that the different matrices T all commute and, hence, can be diagonalized
simultaneously.

The idea is that we work in different steps or levels to diagonalize these matrices. This
is done by considering auxiliary periodic systems. At each level we specify a ‘new’ vacuum
and ‘new’ creation operators. The procedure is illustrated in figure 1. Each time a box
indicates which operators are considered as creation operators and the operators without
the box are considered background or vacuum. The end result is that we find the appropriate
coefficient χ which solves equation (18) and hence we obtain the explicit wavefunctions of the
system.

We start with the first level. The wavefunction for this level is given by the product of ZF
generators: ∣∣A†

M1
(p1) . . . A

†
M

KI
(pK I)

〉I
:= ∣∣A†

M1
(p1) . . . A

†
M

KI
(pK I)

〉
. (20)

In this level, we have K I excitations or creation operators. Since we assume integrability, we
know that this number is conserved.

For the next level, we define the first auxiliary system. This system is just a chain with
K I sites. One has to define what one considers as the vacuum state and what operators are
to be considered as excitations. This is analogous to, for example, the Heisenberg spin chain
where one can take all spins down to be the vacuum and one considers spins up as excitations.
The choice made for the reference state at the second level is

|0〉II = ∣∣A†
1(p1) . . . A

†
1(pK I)

〉I
, (21)

and all the other creation operators are considered to be creation operators on this new vacuum.
This is shown in the second line of figure 1. In this section we exclude the A

†
2 excitations
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A†
1A†

1A†
1A†

1

A†
1A†

1A†
1A†

1

A†
3A†

3A†
3

A†
3A†

3A†
3

A†
3A†

3A†
3

A†
4A†

4A†
4

A†
4A†

4A†
4

A†
4A†

4A†
4

KI excitations on a length L string

KII excitations

KIII excitations

Figure 1. Schematic representation of the different levels of the nested Bethe ansatz. At each level,
the plain dots represent the operators forming the vacuum and the boxes stand for the operators
that are creation operators.

from the discussion since there is a subtle point about them which will be treated in the next
section. However, for the understanding of the process, the absence of A

†
2 plays no role. Now,

one makes a second Bethe ansatz for this level. In this ansatz we will encounter additional
parameters y, which will play the role of the momenta at this level. For one excitation,
consisting of an A†

α , the ansatz takes the form:∣∣A†
α

〉II =
K I∑
k=1

	
(1)
k (y)

∣∣A†
1(p1) . . . A†

α(pk) . . . A
†
1(pK I)

〉I
. (22)

This is just like a sum of plane waves. The way to determine the coefficients 	k(y) is to
impose compatibility with the S-matrix, i.e.

SI
(k,l)

∣∣A†
α

〉II = S
I,I
k,l(pk, pl)

∣∣A†
α

〉II
(k,l)

, (23)

where
∣∣A†

α

〉II
(k,l)

is
∣∣A†

α

〉II
with the momenta pk and pl interchanged and S

I,I
(k,l)(pk, pl) is a phase

factor. This is a natural condition to impose, since this basically implies that the state, obtained
in this way, is an eigenstate of the matrix T.

What the explicit form of 	k(y) is and how to deal with more than one excitation will be
treated in the following section. However, the bottom line of this procedure is that we are one
step closer to imposing periodicity and we now need to consider one creation operator less at
the cost of introducing extra momenta y. We call the number of excitations at this level K II,
this can be interpreted as number of fermions in this system. In order to impose periodicity at
this level, we again need to introduce an additional auxiliary system.

We proceed in a similar way and choose the reference state in the next level as

|0〉III = ∣∣A†
3 . . . A

†
3

〉II
(24)

and one only considers A
†
4 as a creation operator. The Bethe ansatz made this time for a single

excitation is of the same form as in the previous level:∣∣A†
4

〉III
(w) =

K II∑
k=1

	
(2)
k (w)

∣∣A†
3(y1) . . . A

†
4(yk) . . . A

†
3(yK II)

〉II
. (25)

One can now determine the coefficients by imposing compatibility with the level II S-matrix,
which roughly describes the scattering of level II wavefunctions. The system is now reduced
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SSSSSSSSS

Figure 2. Schematic representation of the periodicity condition.

to just one type of creation operators of which there are K III. This means that the wavefunction
is fixed by giving the three different numbers of creation operators K I,K II,K III and three sets
of momenta, {p, y,w}.

By imposing the periodicity condition, one can derive the Bethe equations for the system.
Note that periodicity is present in all three levels, which will give three sets of equations.
The first one will, of course, corresponds to the solutions of the matrix equation (18). The
other ones will put restrictions on the auxiliary momenta y,w. They will be derived in
section 5.

The Bethe equations can be seen as scattering, via the relevant S-matrices, a creation
operator around the string at the different levels. Each time one scatters two operators, the
wavefunction picks up a phase factor. When the operator is back at its original position, the
wavefunction should be unchanged (up to a phase factor). This is schematically depicted in
figure 2. This amounts to the following Bethe equations:

eiLA,k =
III∏

B=I

KB∏
l=1

SBA
(
xB

l , xA
k

)
, (B, l) �= (A, k) (26)

where A,B denote the different levels and, roughly, SAB is the S-matrix describing how an
excitation at the level B is scattered with an excitation of level A. Moreover, eiLI,k = eiLpk and
eiLII,k = eiLIII,k = 1 are phases depending on the level that is considered. This formula will be
derived later on.

The phase eiLpk is dependent on the length of the string, L. When working in the uniform
light-cone gauge [29, 30] one can express the length in terms of the conserved U(1) charge J

of the string: L = J .

4. Levels of the S-matrix

In this section we will derive the explicit form of the wave functions as well as the factors of
the S-matrix corresponding to the different levels.

4.1. SI,I

Recall that the level II reference state is given by |0〉II = ∣∣A†
1(p1) . . . A

†
1(pK I)

〉I
. Since we

assumed integrability, we only need to consider the action of a two particle S-matrix. As is
easily seen from (7), the S-matrix acts trivially on the reference state at this level:

ŜI
(k,l)|0〉II =: SI,I(pk, pl)|0〉II

(k,l)

= A(pk, pl)|0〉II
(k,l)

= S0(pk, pl)

[
x−

l − x+
k

x+
l − x−

k

]
ei pl

2

ei pk
2

|0〉II
(k,l) (27)
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where (k, l) are the two particles that scatter and |0〉II
(k,l) is |0〉II with pk and pl interchanged.

The factor S0, the undetermined scalar phase of the S-matrix is given in the appendix.

4.2. Propagation and SII,I

The next step is to consider excitations in this level. Let us start by considering a single
excitation and see how this ‘propagates’ in the vacuum |0〉II. From (7), it is easily seen that an
insertion of A

†
2, in a sea of A

†
1 fields can ‘decay’ into the operators A

†
3 and A

†
4. Hence, the A

†
2

behaves like a double excitation with respect to this reference state and we do not consider it
here. A generic one-excitation state is now given by

∣∣A†
α

〉II =
K I∑
k=1

	
(1)
k

∣∣A†
1(p1) . . . A†

α(pk) . . . A
†
1(pK I)

〉I
. (28)

The ansatz made for the coefficient is the following:

	
(1)
k = f (pk)

k−1∏
l=1

SII,I(xl). (29)

The terms in the above expression can be viewed as a factor obtained by permuting the
excitation with the background field (SII,I), together with a factor for the combination of
the excitation with the background field at position k (f (pk)). As discussed in the previous
section, one imposes compatibility with the level I S-matrix:

SI
(k,l)

∣∣A†
α

〉II = S
I,I
k,l(pk, pl)

∣∣A†
α

〉II
(k,l)

, (30)

where
∣∣A†

α

〉II
(k,l)

is
∣∣A†

α

〉II
with the momenta pk and pl interchanged.

To explicitly solve the functions f and SII,I, it is enough to consider a chain with only
two sites: ∣∣A†

α

〉II = f (p1)
∣∣A†

α(p1)A
†
1(p2)

〉I
+ f (p2)S

II,I(p1)
∣∣A†

1(p1)A
†
α(p2)

〉I∣∣A†
α

〉II
(1,2)

= f (p2)
∣∣A†

α(p2)A
†
1(p1)

〉I
+ f (p1)S

II,I(p2)
∣∣A†

1(p2)A
†
α(p1)

〉I
.

(31)

Written out, the above compatibility condition gives the following equations:

f (p1)K + f (p2)S
II,I(p1)G = f (p2)A(x1, x2)

f (p1)L + f (p2)S
II,I(p1)H = f (p1)S

II,I(p2)A(x1, x2).
(32)

Now, one uses the first equation to solve for SII,I(p) in terms of x± and f (p). This result can
then be used, together with the second equation, to solve for f (p1) in terms of x−

1 , x−
2 and

f (p2). By differentiating this expression with respect to x−
2 , one can solve for f (p2) only in

terms of x−
2 . Doing this, one obtains

f (pk) = e−i pk
2

η(pk)y

y − x−
k

, (33)

where y is an integration constant. The constant y will play the role of a pseudo-momentum
and we will explicitly include it in our notation from now on. The explicit solution for SII,I is
easily obtained by using the above form of f . The complete solution is given by

SII,I(y, pk) = e−i pk
2

y − x+
k

y − x−
k

f (y, pk) = η(pk) e−i pk
2

y

y − x−
k

.

(34)
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4.3. Scattering and SII,II

By using similar techniques, one also solves for the two excitation case. However, here one
encounters additional degrees of freedom, which are dealt with by introducing an additional
level of the S-matrix.

The natural ansatz to make for a two-excitation state is the superposition of two one-
magnon states:

∣∣A†
α(y1)A

†
β(y2)

〉II =
K I∑

k<l=1

	
(1)
k (y1)	

(1)
l (y2)

∣∣A†
1(p1) . . . A†

α(pk) . . . A
†
β(pl) . . . A

†
1(pK I)

〉I
.

(35)

It is easy to see that this solves the compatibility condition mentioned above if the two
excitations are not neighbours. The additional freedom can be seen from the above formula.
In this ansatz, we always have y1 to the left of y2, so this is very similar to the normal Bethe
ansatz for a spin chain. In analogy to this, we introduce a second level S-matrix, SII, which
deals with interchanging y1 and y2. So a general two-excitation state

∣∣A†
αA

†
β

〉II
, consisting of

A†
α and A

†
β , will be of the form:∣∣A†

αA
†
β

〉II = ∣∣A†
α(y1)A

†
β(y2)

〉II
+ SII

12(y1, y2)
∣∣A†

α(y1)A
†
β(y2)

〉II
, (36)

with

SII
12(y1, y2)

∣∣A†
α(y1)A

†
β(y2)

〉II = M12(y1, y2)
∣∣A†

α(y2)A
†
β(y1)

〉II
+ N12(y1, y2)

∣∣A†
β(y2)A

†
α(y1)

〉II
. (37)

Indeed, SII acts like a S-matrix with respect to the momenta yi .
The A

†
2 field has to be included as well. Since this behaves like a double excitation in the

A
†
1 background, we do not have the additional freedom corresponding to interchanging the

y s. Instead, one includes an additional factor f (y1, y2, pk), which occurs when two excitations
reside on the same position. This leads to the following ansatz:

∣∣A†
2

〉II =
K I∑
k=1

	
(1)
k (y1)	

(1)
k (y2)f (y1, y2, pk)

∣∣A†
1(p1) . . . A

†
2(pk) . . . A

†
1(pK I)

〉I
. (38)

To sum it all up, a general two excitation state is given by

|2〉II = ∣∣A†
α(y1)A

†
β(y2)

〉
+ εαβ

∣∣A†
2

〉
+ SII

12

∣∣A†
α(y1)A

†
β(y2)

〉
. (39)

The explicit form of the second level S-matrix and the two-excitation factor can be obtained
by imposing compatibility with the level I S-matrix. When we explicitly write down the
two-excitation state, we get

|2〉II = f (y1, p1)f (y2, p2)S
II,I(y2, p1)

∣∣A†
α(p1)A

†
β(p2)

〉I
+ f (y1, p1)f (y2, p1)f (y1, y2, p1)ε

αβ
∣∣A†

2(p1)A
†
1(p2)

〉I
+ f (y1, p2)f (y2, p2)S

II,I(y1, p1)S
II,I(y2, p1)f (y1, y2, p2)ε

αβ
∣∣A†

1(p1)A
†
2(p2)

〉I
+ M(y1, y2)f (y2, p1)f (y1, p2)S

II,I(y1, p1)
∣∣A†

α(p1)A
†
β(p2)

〉I
+ N(y1, y2)f (y2, p1)f (y1, p2)S

II,I(y1, p1)
∣∣A†

β(p1)A
†
α(p2)

〉I
. (40)

When we write out the compatibility condition, we get four equations corresponding to the
different configurations in (40). In order to make the equations not more cumbersome than they
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already are, we introduce the short-hand notation fkl := f (yk, pl), Skl := SII,I(yk, pl),M :=
M12(y1, y2), N := N12(y1, y2). The equations coming from the configurations

∣∣A†
αA

†
β

〉
and∣∣A†

βA†
α

〉
are given by

{f12f21S22 + Mf22f11S12}�21A = {f11f22S21 + Mf21f12S11}�12
D + E

2

+ Nf21f12S11�12
D − E

2
+ (−f11f21f121 + f12f22S11S21f122)

C

2
(41)

and

Nf22f11S12�21A = {f11f22S21 + Mf21f12S11}�12
D − E

2

+ Nf21f12S11�12
D + E

2
− (−f11f21f121 + f12f22S11S21f122)

C

2
. (42)

The equations coming from the double excitation A
†
2 are easily seen to be given by

f11f21S12S22f121A = {f11f22S21 + (M − N)f21f12S11}�12
F

2

+ f11f21f121
A − B

2
+ f12f22S11S21f122

A + B

2
(43)

and

f12f22f122A = −{f11f22S21 + (M − N)f21f12S11}�12
F

2

+ f11f21f121
A + B

2
+ f12f22S11S21f122

A − B

2
. (44)

First, we add equations (41) and (42), which yields

M + N = −1. (45)

From adding (43) and (44), it can be easily seen that f (y1, y2, pk) must be of the form

f (y1, y2, pk) =
(
y1y2 − x+

k x−
k

)
η(pk)2

(
x+

k − x−
k

)
x−

k

h(y1, y2). (46)

Finally, this leaves us to determine M −N and the factor h(y1, y2). This is done by subtracting
equations (41) and (42) and by subtraction of equations (43) and (44). The resulting equations
can be solved analytically. First, one solves for M − N , by eliminating h(y1, y2). This yields
a fraction whose numerator and denominator are both polynomials in y1, y2, with coefficients
depending on p1, p2. By doing a careful analysis of the numerator and denominator and by
comparing the two, using the relation (A.2), one obtains the following result:

M − N =
v1 − v2 + i

g

v1 − v2 − i
g

, (47)

where the new spectral parameter vk is defined by

vk := yk +
1

yk

. (48)

For completeness we state the final solutions of M and N:

M =
i
g

v1 − v2 − i
g

N = − v1 − v2

v1 − v2 − i
g

.

(49)
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The last thing to determine is the function h. Since we have an exact formula for M and N,
finding the solution is rather straightforward.

h(y1, y2) = − i

y1y2

y1 − y2

v1 − v2 − i
g

. (50)

Let us stress that the solutions obtained are unique.
In [13] it is discussed how to generalize this to more than two excitations by using

the supersymmetry generators. For this we need to consider the explicit four-dimensional
representation of su(2|2) and in particular the representation of the supersymmetry generators
Qα . We use the conventions from [23]

Qk,α|0〉II = ak

∣∣A†
1(p1) . . . A†

α(pk) . . . A
†
1(pK I)

〉I
Qk,αQl,β |0〉II = akal

∣∣A†
1(p1) . . . A†

α(pk) . . . A
†
β(pl) . . . A

†
1(pK I)

〉I
Qk,αQk,β |0〉II = akbkε

αβ
∣∣A†

1(p1) . . . A
†
2(pk) . . . A

†
1(pK I)

〉I
,

(51)

with ak = √
g

√
i
(
x−

k − x+
k

)
ei

pk+1+···+p
KI

2 and bk = − ak

x−
k

. We define dressed supersymmetry
generators

Q±
α,k := e−i P

2
x±

k

x±
k − x∓

k

Qα,k, (52)

where P := ∑K I

i=1 pi . By using the identity:

y

y − x−
k

= x+
k

x+
k − x−

k

+
x−

k

x−
k − x+

k

y − x+
k

y − x−
k

, (53)

we see that we can write the one excitation state as
K I∑
k=0

�k

(
Q−

α,k + Q+
α,k+1

)|0〉II, �k :=
k∏

l=1

y − x+
l

y − x−
l

. (54)

This formula can be seen as a level II excitation which is moved through the vacuum via
�k , where it can be joined with the vacuum to the left by Q− or to the right by Q+. The
two-excitation state can now be written as∣∣A†

αA
†
β

〉II = 1

2

K I∑
k=0

�k(y1)�k(y2)
{
Q−

α,kQ
−
β,k + 2Q−

α,kQ+
β,k+1 + Q+

α,k+1Q+
β,k+1

}|0〉II

+
K I∑

k<l=0

�k(y1)�l(y2)
(
Q−

α,k + Q+
α,k+1

)(
Q−

β,l + Q+
β,l+1

)|0〉II. (55)

The first term is asymmetric since we need to make sure that y1 stays to the left of y2, so the
first term can be seen as the ordered version of the second. The total two-excitation state is
now given by

|2〉II = ∣∣A†
αA

†
β

〉II
+ SII

12

∣∣A†
αA

†
β

〉II
, (56)

with

SII
12

∣∣A†
α(y1)A

†
β(y2)

〉II = M
∣∣A†

α(y2)A
†
β(y1)

〉II
+ NSII

12

∣∣A†
β(y2)A

†
α(y1)

〉II
. (57)

From this one can completely get rid of the explicit use of A
†
2 in the formulae, since the

corresponding factor has been distributed among the two different regions. This is now easily
generalized to an arbitrary number of excitations.
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Finally, by now introducing the third level vacuum (24), we can compute SII,II. It follows
that

SII,II = −M − N = 1. (58)

Note that we follow the convention of [13] and introduce and additional − sign when we
scatter two fermions.

4.4. Final levels

All that remains is a brief derivation of the last terms. The procedure is exactly the same
as above, only the expressions involved are considerably more simple. We define the next
reference state to be

|0〉III = ∣∣A†
3(y1) . . . A

†
3(yK II)

〉II
(59)

and we only need to consider the creation operators A
†
4 as excitations (note that by the

discussion at the end of the previous section, we tacitly split up the A
†
2 into an A

†
3 and an A

†
4).

Repeating the process described above, we are led to define a one-excitation state

∣∣A†
4(w)

〉III =
K II∑
k=1

	
(2)
k (w)

∣∣A†
3(y1) . . . A

†
4(yk) . . . A

†
3(yK II)

〉II
, (60)

with

	
(2)
k (w) = f (2)(w, yk)

k−1∏
l=1

SIII,II(w, yk). (61)

Note that, with a modest amount of foresight, we have already included the explicit dependence
on the pseudo-momentum w, which will again come in as an integration constant. This time,
the scattering relations are given by (37) and the compatibility relation is given by

SII
(k,l)

∣∣A†
4(w)

〉 = SII,II
∣∣A†

4(w)
〉
(k,l)

, (62)

where this time the subscript (k, l) stands for interchanging yk and yl . This yields the equations:

Mf (2)(w, v1) + Nf (2)(w, v2)S
III,II(w, y1) = f (2)(w, v2)

Nf (2)(w, v1) + Mf (2)(w, v2)S
III,II(w, y1) = f (2)(w, v1)S

III,II(w, y2),
(63)

in which the conventional extra − is to be read in M,N and SII,II. These equations are
straightforwardly solved by

f (2)(w, yk) =
w − i

2g

w − vk − i
2g

SIII,II(w, yk) =
w − vk + i

2g

w − vk − i
2g

.

(64)

When we consider a two excitation state, we will need to introduce the S-matrix, SIII,III(w1, w2),
which governs the interchanging of the w s, analogous to the previous level. The same ansatz
for the two-excitation state as in the previous level can be made (without the term in which
the excitations are on the same position, of course):∣∣A†

4(w1)A
†
4(w2)

〉III =
∑
l1<l2

	
(2)
l1

(w1)	
(2)
l2

(w2)
∣∣ . . . A†

4

(
yl1

)
. . . A

†
4(yl2) . . .

〉II
. (65)



14426 M de Leeuw

By imposing the compatibility condition on the generic two excitation state at this level∣∣A†
4(w1)A

†
4(w2)

〉III
+ SIII,III

∣∣A†
4(w1)A

†
4(w2)

〉III
(66)

one derives the following equation:

f
(2)
11 f

(2)
22 S

III,II
21 + SIII,IIIf

(2)
21 f

(2)
12 S

III,II
12 = f

(2)
12 f

(2)
21 S

III,II
22 + SIII,IIIf

(2)
22 f

(2)
11 S

III,II
11 . (67)

This is solved by

SIII,III(w1, w2) =
w1 − w2 − i

g

w1 − w2 + i
g

, (68)

where again an additional–sign was absorbed. In general the K III-excitation state is given by∣∣A†
4(w1) . . . A

†
4(wK III)

〉III
+ SIII · ∣∣A†

4(w1) . . . A
†
4(wK III)

〉III
, (69)

with∣∣A†
4(w1) . . . A

†
4(wK III)

〉III
=

∑
l1<···<lKIII

	
(2)
l1

(w1) . . . 	
(2)
l
KIII

(wK III)
∣∣A†

3(y1) . . . A
†
4

(
yl1

)
. . . A

†
4

(
ylKIII

)
. . .

〉II
. (70)

Now the creation operator picture has completely dissolved and we are only left with the
numbers K I,K II,K III and the momenta p, y,w. From the above discussion, it is easily seen
that

K I = N
(
A

†
1

)
+ N

(
A

†
2

)
+ N

(
A

†
3

)
+ N

(
A

†
4

)
K II = 2N

(
A

†
2

)
+ N

(
A

†
3

)
+ N

(
A

†
4

)
K III = N

(
A

†
2

)
+ N

(
A

†
4

)
,

(71)

where N
(
A

†
M

)
stands for the number of A

†
Ms in the state. K I is the number of creation

operators, K II is the fermion number and K III is the number of fermions of flavor A
†
4. One can

use these numbers in the above ansatz for the wavefunction and go back through all levels to
obtain the total wavefunction of the system corresponding to p, y,w. Thus, one starts with a
level III wave function with K III excitations and by (69) one writes this as a linear combination
of level II states, which can be written in terms of level I states.

4.5. Comparison with the spin chain picture

In [13], dynamic spin chains are considered. As discussed before, the S-matrix, is given by
(7). When comparing the above discussion to that in [13], there are a few notational issues to
have in mind. First, we have A

†
a ↔ φa and A†

α ↔ ψα . Also, since in this case one deals with
spin chains, there are also Z fields present in the discussion. This alters the first Bethe ansatz,
in the sense that there is now a level I vacuum, consisting only of Zs.

Other than this, the entire discussion basically goes through, apart from the fact that the
spin chains are dynamic. This means that Z fields can be created and annihilated by creation
operators Z+ and annihilation operators Z−. These operators give an additional phase factor
in (40), which, in this picture, becomes

|	II〉 = f (y1, x1)f (y2, x2)S
II,I(y2, x1)

∣∣ψα
1 ψ

β

2

〉I
+ f (y1, x1)f (y2, x1)f (y1, y2, x1)

x−
2

x+
2

εαβ
∣∣φ2

1φ
1
1Z+

〉I
+ f (y1, x2)f (y2, x2)S

II,I(y1, x1)S
II,I(y2, x1)f (y1, y2, x2)ε

αβ
∣∣φ1

1φ
2
1Z+

〉I
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+ M(y1, y2)f (y2, x1)f (y1, x2)S
II,I(y1, x1)

∣∣ψα
1 ψ

β

2

〉I
+ N(y1, y2)f (y2, x1)f (y1, x2)S

II,I(y1, x1)
∣∣ψβ

1 ψα
2

〉I
. (72)

The results for the spin chain are given by

SI,I = S0(pk, pl)
x−

l − x+
k

x+
l − x−

k

SIII,II =
w − vk + i

2g

w − vk − i
2g

SII,I = y − x+
k

y − x−
k

SIII,III =
w1 − w2 − i

g

w1 − w2 + i
g

SII,II = 1.

(73)

Since the string and spin chain S-matrix only differ by x-dependent phase factors, one expects
that the different levels of the S-matrix also only differ by phase factors, which is indeed
the case. Furthermore, the factors depending only on the auxiliary parameters y,w coincide,
which is not surprising since they are independent of x. Finally, note thatZ fields basically give
an extra level and hence one obtains in this case an extra Bethe equation, which corresponds
to the level-matching condition.

5. Bethe equations

5.1. Final level

In this section, we will derive the Bethe equations, by imposing periodicity on the
wavefunction. Consider a chain with K II sectors and K III excitations. The way to impose
periodicity is depicted in figure 3.

In this figure the dots represent the K II sites and the arrows represent the excitations at
this level. The drawn configuration depicts one term of the ansatz for the wavefunction:∣∣A†

4(w1) . . . A
†
4(wK III)

〉III
+ SIII

∣∣A†
4(w1) . . . A

†
4(wK III)

〉III
, (74)

where SIII
∣∣A†

4(w1) . . . A
†
4(wK III)

〉III
stands for the different configurations corresponding to

interchanging the ws. Furthermore, we have∣∣A†
4(w1) . . . A

†
4(wK III)

〉III
=

∑
l1<···<l

KIII

	
(2)
l1

(w1) . . . 	
(2)
lKIII

(wK III)
∣∣A†

4(y1) . . . A
†
4

(
yl1

)
. . . A

†
3(yK II)

〉II
. (75)

Recall that the coefficients 	
(2)
l are given by

	
(2)
l (w) = f (2)(vl, w)

∏
l

SIII,II(vi, w), (76)

but since we have periodicity, there is an ambiguity in choosing over which sites the product
is taken. This is represented by the dotted lines in figure 3. The different depicted choices
lead to a consistency check, corresponding to periodicity. Note that this is just the analogue
of (16).

For each of the choices one can write down the explicit wavefunction, by just following
the prescription given in the previous sections. We will give the explicit formulae for the first
two lines, leaving the other ones for the interested reader.

The first configuration is just the superposition of K III plane waves:∑
l1<···<l

KIII

	
(2)
l1

(w1) . . . 	
(2)
lKIII

(wK III)
∣∣A†

4(y1) . . . A
†
4

(
yl1

)
. . . A

†
3(yK II)

〉II
. (77)
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0 LIII 2LIII 3LIII

w1 w1 w1w2 w2 w2w3 w3 w3w4 w4 w4

Figure 3. Schematic representation of the periodicity. The plain dots represent the operators
forming the vacuum and the arrows stand for the excitations.

The second wavefunction is also a superposition of plane waves, but this time, the parameters
w are in different order and we pick up additional factors of SIII,II:

SIII,II(w1, v1) . . . SIII,II(w1, vK II)

K III∏
l �=1

SIII,III(w1, wl)

×
∑

l1<...<lKIII

	
(2)
l1

(w2) . . . 	
(2)
l
KIII

(w1)
∣∣A†

4(y1) . . . A
†
4

(
yl1

)
. . . A

†
3(yK II)

〉II
. (78)

The factors of SIII,III(wl, w1) arise because w1 is now to the right of the other w s. Since these
two wavefunctions should be equal, it is easy to see that the following equation should hold:

K II∏
l=1

SII,III(vl, w1)

K III∏
l �=1

SIII,III(wl, w1) = 1, (79)

where we define SII,III(vl, wk) := 1
SIII,II(wk,vl )

. By considering the other choices one easily

derives all the K III Bethe equations for this level:
K II∏
l=1

SII,III(vl, wk)

K III∏
l �=k

SIII,III(wl, wk) = 1. (80)

We see that this coincides with (26). Finally, note that from these equations it also follows
that the choice of origin is irrelevant as is seen by comparing the first and last line in figure 3,
in which all the dotted lines are in the interval [L, 2L] opposed to the interval [0, L].

5.2. Other levels

In this section, we will only treat the second level Bethe equations. The level I Bethe equations
are, of course, obtained in a similar way. We apply the same procedure as above. The only
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0 L 2L 3L
y1 y1 y1y1 y1 y1

(
y3
w

) (
y3
w

) (
y3
w

)

Figure 4. Schematic representation of the periodicity at the second level. The plain dots represent
the operators forming the vacuum at this level. The black arrows stand for the A3 excitations and
the white arrow corresponds to the A4 excitation.

difference is that we have more types of excitations. For ease of survey, we will only consider
an explicit example, leaving the general case, which is not much more difficult, for the
interested reader. We consider the case with two A

†
3 and one A

†
4 operator, see figure 4.

Again, the shown configurations in figure 4 only correspond to one term from the full
wavefunction. Let us write the full wavefunction to make things more explicit. We have
K III = 1, so our wavefunction at this level is∣∣A†

4

〉III
. (81)

We can write this out in a linear combination of level II terms, as explained above:∣∣A†
4

〉III = 	
(2)
1 (w)

∣∣A†
4A

†
3A

†
3

〉II
+ 	

(2)
2 (w)

∣∣A†
3A

†
4A

†
3

〉II
+ 	

(2)
3 (w)

∣∣A†
3A

†
3A

†
4

〉II
. (82)

Then we can do the same for each level II term and we obtain a large linear combination of
level I wavefunctions,∣∣A†

4A
†
3A

†
3

〉II =
∑

l1<l2<l3

	l1(y1)	l2(y2)	l3(y3)
∣∣ . . . A†

4 . . . A
†
3 . . . A

†
3 . . .

〉I
+ · · · (83)

One such a term from this expansion is depicted in figure 4.
From the previous section, we know that the level III wavefunction can be written down

unambiguously if the Bethe equations at that level are satisfied. However, for the level II
wavefunction these equations still need to be derived. The procedure is completely analogous
to that given above for 	(2) and the result is given by

K I∏
m=1

SII,I(yk, xm)

K II∏
l �=k

SII,II(yk, yl)

K III∏
n=1

SII,III(wk, yn) = 1, (84)

which coincides with (26). Note that in the derivation of this equation, compatibility of the
level III state under the level II S-matrix plays a crucial role. Finally, when comparing to (26),
we use the definition

SAB
(
xA

k , xB
l

) = 1

SBA
(
xB

l , xA
k

) . (85)

The Bethe equation can be read as follows. We take the second line and we permute the level
II excitation back to its original position. Doing this, we have to permute it past a level III
excitation, giving a factor SII,III(wl, yk), get it past level II excitations, which give SII,II(yl, yk)

and finally we have moved it through the vacuum, giving the SII,I(yk, xl) terms. One can also
read of the Bethe equations by explicitly writing out formula (18).
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5.3. Results

Let us derive the explicit Bethe equations. We will first give them for the su(2|2) case, from
which the su(2|2)2 follows.

From (26) we obtain the following three Bethe equations:

eipk(L+ KI

2 − KII

2 ) = ei P
2

K I∏
l=1,l �=k

[
S0(pk, pl)

x+
k − x−

l

x−
k − x+

l

] K II∏
l=1

x−
k − yl

x+
k − yl

1 = e−i P
2

K I∏
l=1

yk − x+
l

yk − x−
l

K III∏
l=1

yk + 1
yk

− wl + i
2g

yk + 1
yk

− wl − i
2g

1 =
K II∏
l=1

wk − yl − 1
yl

+ i
2g

wk − yl − 1
yl

− i
2g

K III∏
l=1,l �=k

wk − wl − i
g

wk − wl + i
g

.

(86)

These equations coincide, as it should be, with those given in [26]. The equations for the full
su(2|2)2 case follow easily:

eipk(L+K I− KII
(1)

2 − KII
(2)

2 ) = eiP
K I∏

l=1,l �=k

[
S0(pk, pl)

x+
k − x−

l

x−
k − x+

l

]2 2∏
α=1

K II
(α)∏

l=1

x−
k − y

(α)
l

x+
k − y

(α)
l

1 = e−i P
2

K I∏
l=1

y
(α)
k − x+

l

y
(α)
k − x−

l

K III
(α)∏

l=1

y
(α)
k + 1

y
(α)
k

− w
(α)
l + i

2g

y
(α)
k + 1

y
(α)
k

− w
(α)
l − i

2g

1 =
K II

(α)∏
l=1

w
(α)
k − y

(α)
k − 1

y
(α)
k

+ i
2g

w
(α)
k − y

(α)
k − 1

y
(α)
k

− i
2g

K III
(α)∏

l �=k

w
(α)
k − w

(α)
l − i

g

w
(α)
k − wα

l + i
g

,

(87)

with α = 1, 2.
Let us conclude by comparing these equations to those proposed in [7]. We compare our

equations to the reformulated version of these equations in [10]. We see that they agree with
the (η1, η2) = (+, +) sector if one imposes the level matching condition eiP = 1 and if one
makes the following identifications:(
K I,K II

(1), K
II
(2), K

III
(1), K

III
(2)

) = (K4,K1 + K3,K5 + K7,K2,K6)(
x±

k ; y
(1)
k ; y

(2)
k ; v

(1)
k ; v

(2)
k ;w

(1)
k ;w

(2)
k

) = (
x±

4,k; x3,k; x5,k; u3,k; u5,k; u2,k; u6,k

)
,

(88)

with the parameter L = J .

6. Conclusions

In this note, the Bethe equations corresponding to the string S-matrix from [23] were derived
by using the coordinate Bethe ansatz. The equations obtained for the string case correspond
to those recently obtained in [26] and also coincide with the proposed equations in [7]. The
method was already applied to the spin chain case in [13].

It would be interesting to study the relation between both approaches to the Bethe ansatz,
especially the relation between the FZ creation operators and the creation operators obtained
from the monodromy matrix in the algebraic Bethe ansatz.

There still remains a lot to be studied about these equations. The dependence on
the momenta and total momentum P may yield interesting results, for example in the
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thermodynamic limit. Furthermore, it would be interesting to see if the equations can be
obtained with the method of [31].

Finally, since it is possible from the S-matrix from [23] to link the spin chain picture with
the string picture, it would be nice to study if both cases can be linked via a continuous family
of S-matrices and if the aforementioned procedure can be applied.
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Appendix. S-matrix

For completeness, let us give the explicit form of coefficients of the S-matrix (7):

a1(p1, p2) = S0(p1, p2)
x−

2 − x+
1

x+
2 − x−

1

η1η2

η̃1η̃2

a2(p1, p2) = S0(p1, p2)

(
x−

1 − x+
1

)(
x−

2 − x+
2

)(
x−

2 + x+
1

)(
x−

1 − x+
2

)(
x−

1 x−
2 − x+

1 x+
2

) η1η2

η̃1η̃2

a3(p1, p2) = −S0(p1, p2)

a4(p1, p2) = S0(p1, p2)

(
x−

1 − x+
1

)(
x−

2 − x+
2

)(
x−

1 + x+
2

)(
x−

1 − x+
2

)(
x−

1 x−
2 − x+

1 x+
2

)
a5(p1, p2) = S0(p1, p2)

x−
2 − x−

1

x+
2 − x−

1

η1

η̃1

a6(p1, p2) = S0(p1, p2)
x+

1 − x+
2

x−
1 − x+

2

η2

η̃2

a7(p1, p2) = iS0(p1, p2)

(
x−

1 − x+
1

)(
x−

2 − x+
2

)(
x+

1 − x+
2

)(
x−

1 − x+
2

)(
1 − x−

1 x−
2

)̃
η1η̃2

a8(p1, p2) = iS0(p1, p2)
x−

1 x−
2

(
x+

1 − x+
2

)
η1η2

x+
1 x+

2

(
x−

1 − x+
2

)(
1 − x−

1 x−
2

)
a9(p1, p2) = S0(p1, p2)

x+
1 − x−

1

x−
1 − x+

2

η2

η̃1

a10(p1, p2) = S0(p1, p2)
x+

2 − x−
2

x−
1 − x+

2

η1

η̃2
.

(A.1)

The parameters x±
k are related to the quasi-momentum of the magnons and the coupling

constant in the standard way:

x+
k

x−
k

= eipk , x+
k +

1

x+
k

− x−
k − 1

x−
k

= i

g
. (A.2)

Furthermore, the scalar function S0(p1, p2) is of the form:

S0(p1, p2)
2 = x+

2 − x−
1

x−
2 − x+

1

1 − 1
x+

1 x−
2

1 − 1
x−

1 x+
2

eiθ(p1,p2) eia(p1ε2−p2ε1). (A.3)
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This S-matrix encompasses both the spin chain S-matrix and the string S-matrix, depending
on the choice of parameters. To be precise, the spin chain S-matrix is given by making the
following choice:

η1 = η(p1) η2 = η(p2)

η̃1 = η(p1) η̃2 = η(p2).
(A.4)

The string S-matrix is obtained by choosing:

η1 = η(p1) ei p2
2 η2 = η(p2)

η̃1 = η(p1) η̃2 = η(p2) ei p1
2 .

(A.5)

In both cases, η(pk) :=
√

i
(
x−

k − x+
k

)
.
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